
Spring 2015-16
SBASSE, LUMS

Dr. –Ing. Ahmad Kamal Nasir 10 Feb 2016 Page: 1of 2

EE565: MOBILE ROBOTICS

LAB # 3: HARDWARE INTERFACING OF ARDUINO WITH ROS
DESCRIPTION & MOTIVATION
Once the students are familiar with a Robotics engine (ROS) & a simulation environment (Gazebo), an
important aspect to learn is the hardware interfacing part. Real world experiments rely on such skillset
and almost all research work in robotics, today, requires a sound experimental validation that takes into
account physical, mechanical and other real-world inaccuracies and non-modeled discrepancies.
This lab combines basic knowledge of robotic framework, ROS, with a simple & easy-to-use hardware
controller that uses Arduino board. We will provide each student group with a motion controller board, a
serial communication interface, with a ROS-installed PC. Students will learn to interface the Arduino
board with ROS from scratch. In the end, they will be able to make a standalone system driven from a
ROS node that controls Arduino board based on required robotic application.

IN-LAB WORK
1. ARDUINO BASICS:

i. Install Arduino IDE using sudo apt-get install arduino.
ii. Run by executing arduino in terminal.
iii. Select the correct Tools->Board and the right Serial Port. If your Serial Port option is greyed out,

run sudo chmod a+rw /dev/ttyACM0.
iv. Follow SerialEvent example, burn it to your board and check by sending any string using Arduino

IDE's Serial Monitor. [You may use a character other than end-of-line, in the code, if using Serial
Monitor to mark string completion.]

v. Download and run the motor speed example, 'motorSpeed.ino' available on LMS for direction and
speed control. Modify it to for different speeds and direction.

vi. Run the quadrature encoder example, 'encoder.ino' to periodically transmit motor velocity, and
view it on Serial Monitor. Modify it to print motor speed in radians/second.

2. INTERFACING ARDUINO & ROS:
Open the rosserial_arduino tutorials {url}, and complete the following

i. Arduino IDE Setup (this will install the Arduino library “ros_lib”)
ii. Hello World (Example Publisher)
iii. Blink (Example Subscriber)

OPTIONAL (WILL HELP FOR LAB ASSIGNMENT):
Instructions will be given for the following
 Use of turtlebot_teleop package instead of basic turtlesim package.
 Installing and running PID library for Arduino.

DELIVERABLES:
In lab work has five deliverable: 1.iv, 1.v, 1.vi, 2.ii and 2.iii. Kindly get all of these checked in due time.

http://wiki.ros.org/rosserial_arduino/Tutorials


Spring 2015-16
SBASSE, LUMS

Dr. –Ing. Ahmad Kamal Nasir 10 Feb 2016 Page: 2of 2

LAB ASSIGNMENT
Build a complete DC Motor Speed Control application, interfaced with ROS. Use the Arduino code
available on LMS. Each group will be provided with the following equipment:
 Motion controller board (H-Bridge + Arduino Board)
 DC Motor having an attached encoder sensor.
 Cable for serial communication between PC and Arduino

Boiler code for Motor Speed Control (using PID library) is available on LMS. This should be interfaced
with ROS framework, through ROS Topics. Motion controller will take a reference motor speed as input
from the serial port, and with its built-in feedback loop, control the DC Motor. The controller will also
publish the Odometery data (current motor speed) to another topic for internal ROS use (as
geometry_msgs/Twist).

DELIVERABLES:
1. Publish motor encoder data as rostopic. This will require writing a publisher node in Arduino code

that will take the encoder's data to publish to a ROS topic (geometry_msgs/Twist in
revolutions/second). This topic may not be used inside ROS for now, but it should be visible and
working. [For this deliverable you can write your own Arduino code as well.]

2. Using the sign of linear velocity (x-axis) (i.e. +ve/-ve) from turtlebot's cmd_vel to decide the
direction of motor rotation. This will require a subscriber node. Move the motor with any constant
speed with the given direction.

3. Implement speed control. Based on turtlebot's linear velocity (x-axis), specifiy reference speed
and direction for your motor. In the end, your motor should move according to the speed and
direction of turtlebot. [It is highly recommended to use turtlebot_teleop package instead of
turtlesim.]


	LAB # 3: HARDWARE INTERFACING OF ARDUINO WITH ROS
	DESCRIPTION & MOTIVATION
	IN-LAB WORK
	ARDUINO BASICS:
	INTERFACING ARDUINO & ROS:
	OPTIONAL (WILL HELP FOR LAB ASSIGNMENT):
	DELIVERABLES:
	LAB ASSIGNMENT
	DELIVERABLES:


